Transmembrane β-barrels: Evolution, folding and energetics
نویسندگان
چکیده
منابع مشابه
Structural Determinants of Transmembrane β-Barrels.
The recognition of β-barrel membrane proteins based on their sequence is more challenging than the recognition of α-helical membrane proteins. This goal could benefit from a better understanding of the physical determinants of transmembrane β-barrel structure. To that end, we first extend the IMM1 implicit membrane model in a way that allows the modeling of membrane proteins with an internal aq...
متن کاملEnergetics of side-chain partitioning of β-signal residues in unassisted folding of a transmembrane β-barrel protein
The free energy of water-to-interface amino acid partitioning is a major contributing factor in membrane protein folding and stability. The interface residues at the C terminus of transmembrane β-barrels form the β-signal motif required for assisted β-barrel assembly in vivo but are believed to be less important for β-barrel assembly in vitro Here, we experimentally measured the thermodynamic c...
متن کاملPredicting transmembrane beta-barrels in proteomes.
Very few methods address the problem of predicting beta-barrel membrane proteins directly from sequence. One reason is that only very few high-resolution structures for transmembrane beta-barrel (TMB) proteins have been determined thus far. Here we introduced the design, statistics and results of a novel profile-based hidden Markov model for the prediction and discrimination of TMBs. The method...
متن کاملPredicting transmembrane beta-barrels and interstrand residue interactions from sequence.
Transmembrane beta-barrel (TMB) proteins are embedded in the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts. The cellular location and functional diversity of beta-barrel outer membrane proteins (omps) makes them an important protein class. At the present time, very few nonhomologous TMB structures have been determined by X-ray diffraction because of the experimental d...
متن کاملSequence determinants of the energetics of folding of a transmembrane four-helix-bundle protein.
Although previous studies are beginning to point to the specific types of helix-helix interactions that stabilize the folds of membrane-bound helical proteins, quantitative thermodynamic data on natural membrane proteins has been very limited. Here the database is expanded substantially by adding thermodynamic data for a series of sequence variants of M2 protein from influenza A virus. The M2 p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biochimica et Biophysica Acta (BBA) - Biomembranes
سال: 2017
ISSN: 0005-2736
DOI: 10.1016/j.bbamem.2017.09.020